2013 Vol. 15, No. 7 1552–1555

Subtle Electronic Effects in Metal-Free Rearrangement of Allenic Alcohols

Venkata R. Sabbasani,[†] Phani Mamidipalli,[†] Huijie Lu,[‡] Yuanzhi Xia,[‡] and Daesung Lee*,[†]

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States, and College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P. R. China

dsunglee@uic.edu

Received February 4, 2013

TMSOTf (89%) TMSCI: no reaction TMSOTf (77%) TMSCI (89%) TMSCI (89%) TMSCTf: decomposition MeO CO₂Et CO₂Et

A general and stereoselective rearrangement of allenic alcohols to (*E,E*)-1,3-dien-2-yl triflates and chlorides was developed under metal-free conditions. Subtle electronic effects of the alkyl and aryl substituents on the carbon bearing the hydroxyl group has a profound impact on the reaction rate and efficiency such that vinyl triflates were obtained from electron-deficient substrates and trimethylsilyl triflate whereas vinyl chlorides were generated with an electron-rich substrate and trimethylsilyl chloride.

Allylic 1,3-transposition of C–O bonds across a π -system is an important transformation in organic synthesis. The 1,3-transposition of allylic¹ and propargylic²

(1) (a) Takai, K.; Nozaki, H.; Oshima, K.; Okazoe, T.; Matsubara, S. Bull. Chem. Soc. Jpn. 1985, 58, 844–849. (b) Narasaka, K.; Kusama, H.; Hayashi, Y. Tetrahedron 1992, 48, 2059–2068. (c) Gordon, M. S.; Jensen, J. H.; Espenson, J. H.; Jacob, J. Organometallics 1998, 17, 1835–1840. (d) Wang, G.; Jimtaisong, A.; Luck, R. L. Organometallics 1998, 17, 4522–4525. (e) Le Ny, J.-P.; Bellemin-Laponnaz, S. C. R. Chimie 2002, 5, 217–224. (f) Morrill, C.; Grubbs, R. H. J. Am. Chem. Soc. 2005, 127, 2842–2843. Related examples with vinyl oxiranes: (g) Batory, L. A.; McInnis, C. E.; Njardarson, J. T. J. Am. Chem. Soc. 2006, 128, 16054–16055. (h) Herrmann, A. T.; Saito, T.; Stivala, C. E.; Tom, J.; Zakarian, A. J. Am. Chem. Soc. 2010, 132, 5962–5963. (i) Mustard, T. J.; Mack, D. J.; Njardarson, J. T.; Cheong, P. H.-Y. J. Am. Chem. Soc. 2013, 135, 1471–1475.

(2) (a) Georgy, M.; Boucard, V.; Campagne, J.-M. J. Am. Chem. Soc. 2005, 127, 14180–14181. (b) Engel, D.; Dudley, G. B. Org. Lett. 2006, 8, 4027–4029. (c) Yu, M.; Li, G.; Wang, S.; Zhang, L. Adv. Synth. Catal. 2007, 349, 871–875. (d) Ramón, R. S.; Marion, N.; Nolan, S. P. Tetrahedron 2009, 65, 1767–1773. (e) Ye, L.; Zhang, L. Org. Lett. 2009, 11, 3646–3649. (f) Gaillard, S.; Bosson, J.; Ramn, R. S.; Nun, P.; Slawin, A. M. Z.; Nolan, P. S. Chem.—Eur. J. 2010, 16, 13729–13740. (g) Pennell, M. N.; Unthank, M. G.; Turner, P.; Sheppard, T. D. J. Org. Chem. 2011, 76, 1479–1482.

alcohols and their acyl derivatives has been extensively studied under oxo-metal or Lewis acid catalyzed conditions (Scheme 1, eqs 1 and 2). On the other hand, the corresponding rearrangement of allenic alcohols or their derivatives (eq 3) has been virtually ignored until recently except for a few examples. Trost realized aldol reactions between aldehydes and enolates derived from allenic alcohols via 1,3-transposition in the

[†]University of Illinois at Chicago.

^{*}Wenzhou University.

presence of an oxo-vanadium catalyst.³ Alcaide observed the formation of mesylated 1,3-dienes upon treating allenic alcohols with methanesulfonyl chloride and triethylamine.^{4a,b} Recently, the conversion of terminal allenic alcohols to 2-halo-1,3-dienes was observed in the presence of a stoichiometric amount of iron(III) halide.⁴

In our continued interest in allylic 1,3-transposition chemistry⁵ coupled with functionalized 1,3-diene syntheses, we envisioned that the rearrangement of allenic alcohols shown in eq 3 should offer a unique opportunity not only for the exploration of their rearrangement under metal-catalyzed or metal-free conditions⁶ but also for developing a new approach for stereoselective synthesis of functionalized 1,3-dienes. Previously reported typical syntheses of functionalized dienes involve metal-catalyzed coupling reactions,⁷ elaborations of allenol derivatives⁸ and vinyl ketones⁹ but proceeded with poor selectivity, or were applied only to the synthesis of dienes with one terminal double bond.

In this regard, we envisioned that the significant thermodynamic driving force for the conversion of allenic alcohols to a substituted 1,3-dienes in eq 3 can be exploited to develop an efficient and stereoselective method for functionalized 1.3-dien-2-vl triflates and chlorides, which are versatile intermediates in organic synthesis. For example, these functionalized 1.3-dienes are viable building blocks to be engaged in a complex molecule synthesis 10 via Diels-Alder reactions and related cycloadditions. Recently, these dienyl triflates and halides were used as substrates for the preparation of chiral allenes. 11 Herein we report a general and stereoselective rearrangement of allenic alcohols to (E,E)-1,3-dien-2-yl triflates and chlorides under metal-free conditions where the subtle electronic effect of the alkyl and aryl substituents on the substrates has a profound impact on the reaction rate and efficiency.

Table 1. Synthesis of Allenyl Alcohols from Terminal Propargylic Alcohols and Ethyl Diazoacetate Catalyzed by CuI

T Chigon, Etgin (Tequiv)								
entry	substrate	allenyl alcohol	yield (%) ^a					
	OH R ₁	OH CO ₂ Et						
1	1a R ₁ = R ₂ = H	2a	90					
2	1b R ₁ = CI, R ₂ = H	2b	82					
3	1c R ₁ = OMe, R ₂ = OMe	2c	80					
4	1d $R_1 = H, R_2 = NO_2$	2d	81					
5	Br OH	Br OH CO ₂ Et	81					
6	F OH F F F If	F OH CO ₂ Et	74					
7	OH 1g	OH CO ₂ Et	76					
8	OH OH OH	OH CO ₂ Et	83					
9	OH 1i	Ph CO ₂ Et	79					
10 11	OH R 1j R = Ph 1k R = n-pentyl	OH CO ₂ Et	83 73					
	OH R	OH CO ₂ Et						
12	1I R = CH_2CH_2Ph	21	85					
13	1m R = n-pentyl	2m	78					
14	1n R = cyclohexyl	2n	73					
15	10 OH	OH CO ₂ Et	70					
	OH	OH CO ₂ Et						
16	1 p n = 1	2p	87					
17	1q n = 7	2q	81					
18	OH 1r	OH CO ₂ Et	77					
	ır ·	ZI [*]						

^a Isolated yield after running the reaction at room temperature for 3 h followed by purification by flash chromatography.

First, by modifying the conditions for copper-catalyzed coupling of terminal alkynes 1a-r and ethyl diazoacetate reported by Fu,¹² we optimized the synthesis of allenic alcohols 2a-r (Table 1).¹³ It was found that the addition of

^{(3) (}a) Trost, B. M.; Luan, X. Nat. Protoc. **2012**, 8, 1497–1501. (c) Kalek, M.; Himo, F. J. Am. Chem. Soc. **2012**, 134, 19159–19169.

^{(4) (}a) Alcaide, B.; Almendros, P.; Aragoncillo, C.; Redondo, M. C. *Eur. J. Org. Chem.* **2005**, 98–106. (b) Alcaide, B.; Almendros, P.; Luna, A.; Prieto, N. *J. Org. Chem.* **2012**, *77*, 11388–11392.

^{(5) (}a) Hansen, E. C.; Lee, D. *J. Am. Chem. Soc.* **2006**, *128*, 8142–8143. (b) Volchkov, I.; Park, S.; Lee, D. *Org. Lett.* **2011**, *13*, 3530–3533. (c) Sun, C.; Li, J.; Lee, D.; Huang, G.; Xia, Y. *Chem. Commun.* **2012**, *48*, 10990–10992. (d) Huang, G.; Xia, Y.; Sun, C.; Li, J.; Lee, D. *J. Org. Chem.* **2013**, *78*, 988–995.

⁽⁶⁾ Reviews on metal-free transformations: (a) Borisova, N. E.; Reshetova, M. D.; Ustynyuk, Y. A. *Chem. Rev.* **2007**, *107*, 46–79. (b) Barluenga, J.; Valdés, C. *Angew. Chem., Int. Ed.* **2011**, *50*, 7486–7500. (c) Shao, Z.; Zhang, H. *Chem. Soc. Rev.* **2012**, *41*, 560–572.

^{(7) (}a) Roush, W. R.; Moriarty, K. J.; Brown, B. B. *Tetrahedron Lett.* **1990**, *31*, 6509–6512. (b) Shen, W.; Wang, L. *J. Org. Chem.* **1999**, *64*, 8873–8879. (c) Ogasawara, M.; Ikeda, H.; Hayashi, T. *Angew. Chem., Int. Ed.* **2000**, *39*, 1042–1044.

^{(8) (}a) Deng, Y.; Fu, C.; Ma, S. *Org. Lett.* **2009**, *11*, 2169–2172. (b) Horvath, A.; Backvall, J.-E. *J. Org. Chem.* **2001**, *66*, 8120–8126.

⁽⁹⁾ Ogasawara, M.; Ge, Y.; Uetake, K.; Takahashi, T. Org. Lett. 2005, 7, 5697-5700.

^{(10) (}a) Johnson, W. S.; Telfer, S. J.; Cheng, S.; Schubert, U. J. Am. Chem. Soc. 1987, 109, 2517–2518. (b) Schreiber, S. L.; Kiessling, L. L. J. Am. Chem. Soc. 1988, 110, 631–633.

^{(11) (}a) Ogasawara, M.; Ikeda, H.; Nagano, T.; Hayashi, T. *J. Am. Chem. Soc.* **2001**, *123*, 2089–2090. (b) Ogasawara, M.; Nagano, T.; Hayashi, T. *J. Org. Chem.* **2005**, *70*, 5764–5767.

Table 2. Reagent Screening for 1,3-Transposition

OH
$$CO_2Et$$
 reagent & Ph H CO_2Et CO_2Et CO_2Et CO_2Et CO_2Et CO_2Et CO_2Et CO_2Et CO_2Et CO_2Et

entry	reagent	equiv	temp (°C)	time (h)		yield (%) ^a	E/Z^b
1	TMSOTf	1	rt	1	3a	53^c	1:0
2	TMSOTf	2	\mathbf{rt}	0.5	3a	63	1:0
3	TMSOTf	2	-78 to rt	0.5	3a	77	1:0
4	TMSCI	1	\mathbf{rt}	2	4a	65^d	35:1
5	TMSI	3	\mathbf{rt}	1	4a	89	33:0
6	$POCl_3$	1	\mathbf{rt}	2	4a	35	1:0
7	TMSBr	1	\mathbf{rt}	0.5	5a	$-^e$	_
8	TMSBr	1	-78	0.5	5a	92	14:1
9	PBr_3	1	rt	1	5a	78	1:1

^a Isolated yield. ^b E/Z ratio was determined by ¹H NMR, and the stereochemistry of the products was determined by ¹H NOE. ^c Only 70% conversion, and the yield is based on recovered starting material. ^d Only 45% conversion, and the yield is based on recovered starting material. ^e Decomposition of **2a**.

a stoichiometric amount of triethylamine to the reaction effectively isomerized the alkynyl alcohols to the corresponding allenic alcohols in excellent yield regardless of the nature of the substituents. Because of the secondary alcohol and disubstituted allene stereogenic units, these allenic alcohols were obtained as a mixture of diastereomers (1:1). In addition, it was found that the hydroxyl group at the propargylic center plays an important role in facilitating the isomerization of the alkyne to the allene. Under the same conditions, terminal alkynes without the hydroxyl group provided a mixture of the alkyne- and allene-containing coupled products.¹⁴

Next, we examined the allylic transposition of allenic alcohol **2a** under various metal-free conditions employing TMSOTf, TMSCl, POCl₃, TMSBr, and PBr₃ (Table 2). Treatment of allenic alcohol **2a** with TMSOTf (1 equiv) at room temperature for 1 h provided vinyl triflate **3a** as a single isomer in 53% yield (entry 1). The yield of **3a** was increased to 63% with 2 equiv of TMSOTf for 0.5 h (entry 2), and further up to 77% by running the reaction at lower temperature (entry 3). Reactions with TMSCl provided vinyl chloride **4a** with good selectivity in 65% yield (E/Z = 35:1)

Table 3. Scope of the Allylic 1,3-Transposition with TMSOTf and TMSCI

OH
R'
$$CO_2Et$$
 $CH_2CI_2, -78 \text{ to } 25 \text{ °C}$
 R'
 X
 H
 $TMSOTf \longrightarrow 3, X = OTf CO_2Et$
 $TMSCI \longrightarrow 4, X = CI$

entry		R	R'	product	yield (%)ª	E:Z ^b		
1	2b	CI—	Н	3b 4b	89 87	1:0 1:0		
2	2c ^c	MeO MeO	Н	3c 4c	— 93	 19:1		
3	2 d ^d	O ₂ N	н	3d 4d	83 — ^e	1:0		
4	2e	Br	Н	3e 4e	81 — ^f	1:0 —		
5	2f ^d	F F	Н	3f 4f	74 —	20:1 —		
6	2g ^c		Н	3g 4g	— 84	 16:1		
7	2h ^c	N _{Ac}	Н	3h 4h	 81	— 1.5:1		
8	2i		Н	3i 4i	71 91	10:1 5:1		
9	2j ^g	<u> </u>	Н	3j 4j	72 —	5:1 —		
10	2k ^g		Н	3k 4k	77 —	3.5:1		
11	2I ^d		Н	31 41	76 — ^h	10:1		
12	2m ^d	^^··	Н	3m 4m	74 — ^h	20:1		
13	2n ^d		Н	3n 4n	77 h	20:1		
14	2o ^c	Me	Ме	3o 4o	— 67 ⁱ	— 1:0		
15	2p ^c	\sim	^ 	3p 4p	— 56 ^{<i>i</i>}	— 1:0		
16	2q ^c		~.′ ^.,	3q 4q	— 63 ⁱ	— 1:0		
17	2s	OH Ph		Ph		3s 81 (X = OTf) ^j 4s 72 (X = CI)		

"Isolated yields. "E/Z ratio was determined by ¹H NMR, and the stereochemistry was determined by NOE. "Decomposition with TMSOTf. "No reaction with TMSCl. "After heating up to 150 °C, **2d** was recovered (70%). "Unknown product was formed." Decomposition with TMSCl. "Very low conversion even with 5 equiv of TMSCl. "Excess TMSCl (5 equiv) was used for full conversion." During the purification, vinyl triflate **3s** hydrolyzed to *trans*-4-phenyl-3-buten-2-one.

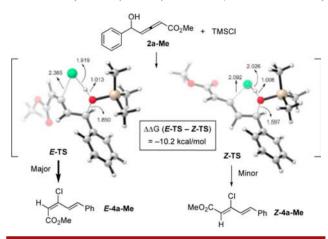
after 2 h (based on 45% conversion) when 1 equiv of the reagent was employed (entry 4). The yield of **4a** increased to 89% (E/Z = 33:1) with 3 equiv of TMSCl (entry 5). A single isomer of vinyl chloride **4a** could be obtained from the reaction with POCl₃ but only in 35%

1554 Org. Lett., Vol. 15, No. 7, 2013

⁽¹²⁾ Suárez, A.; Fu, G. C. Angew. Chem., Int. Ed. 2004, 43, 3580-3582

⁽¹³⁾ Reviews on allene chemistry: (a) Wei, L.-L.; Xiong, H.; Hsung, R. P. Acc. Chem. Res. 2003, 36, 773–782. (b) Ma, S. Chem. Rev. 2005, 105, 2829–2872. (c) Brummond, K. M.; DeForrest, J. E. Synthesis 2007, 795–818. (d) Ogasawara, M. Tetrahedron: Asymmetry 2009, 20, 259–271. (e) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994–2009. (f) Yu, S.; Ma, S. Angew. Chem., Int. Ed. 2012, 51, 3074–3112. Leading references for allene synthesis: (g) Fürstner, A.; Méndez, M. Angew. Chem., Int. Ed. 2003, 42, 5355–5357. (h) Ogasawara, M.; Okada, A.; Nakajima, K.; Takahashi, T. Org. Lett. 2009, 11, 177–180. (i) Zhang, W.; Xu, H.; Xu, H.; Tang, W. J. Am. Chem. Soc. 2009, 131, 3832–3833. (j) González, J. R.; González, A. Z.; Soderquist, J. A. J. Am. Chem. Soc. 2009, 131, 9924–9925.

^{(14) (}a) Kumaraswamy, G.; Jayaprakash, N.; Balakishan, G. *Org. Biomol. Chem.* **2011**, *9*, 7913–7920. (b) Hassink, M.; Liu, X.; Fox, J. M. *Org. Lett.* **2011**, *13*, 2388–2391.


yield (entry 6). While a more reactive reagent such as TMSBr rendered the decomposition of the substrate at room temperature, the expected bromide 5a was obtained in good yield and selectivity at -78 °C (entries 7 and 8). Also the reaction with PBr₃ afforded 5a in 78% yield as a mixture of E/Z-isomers in a 1:1 ratio (entry 9). In all cases, the 1,3-diene products are trans in the styryl unit.

In order to extend the scope of this rearrangement, a variety of allenic alcohols were treated with TMSOTf and TMSCl and the results are shown in Table 3. When treated with both TMSOTf and TMSCl, substrates 2b and 2i with the 4-chlorophenyl and cinnamyl group afforded dienyl triflate 3b/3i and dienyl chloride 4b/4i, respectively, with good yields and E/Z-selectivity (entries 1 and 8). However, allenic alcohols 2d-f possessing electron-withdrawing groups on the aromatic ring (entries 4–6) or 2j/2k containing alkynyl substituents (entries 9 and 10), showed good reactivity profiles with TMSOTf, yielding the corresponding dienyl triflates 3d-f and 3j/3k in good yields, but were found to be inert (2d, 2f, 2j, 2k) or afforded an unidentified material (from 2e) with TMSCl. Interestingly, only the alkyne-substituted substrates 3i and 3k showed relatively low E/Z-selectivity (5:1 and 3.5:1). On the other hand, upon increasing the electron-donating nature of the aryl/heteroaryl groups such as in allenic alcohols 2c, 2g, and **2h** (entries 2, 6, and 7), the opposite reactivity profiles were observed, where the decomposition of substrates was observed with TMSOTf, yet excellent yields and selectivity of dienyl chlorides 4c, 4g, and 4h were obtained with TMSCl with the exception of the low selectivity of 4h (E/Z = 1.5:1). Secondary allenic alcohols **2l**-**n** with either cyclic or acyclic alkyl substituents (entries 11–13) reacted with TMSOTf to deliver dienvl triflates 31-n in good yields and selectivity, but they are virtually inert with TMSCl. On the other hand, tertiary allenic alcohols 20-q (entries 14–16) decomposed with TMSOTf yet provided E-dienyl chlorides 4l-n in acceptable yields. A terminal allenic alcohol 2s without an ester group afforded the corresponding dienyl triflate 3s and chloride 4s upon treatment with TMSOTf and TMSCl, respectively (entry 17). These results clearly demonstrate the need for a delicate balance of the electronic effect of the substituents in the substrates and reactivity of TMSOTf and TMSCl for the observed 1,3-transposition.¹⁵

To gain insight into the mechanism, we carried out brief DFT caculations (M06-2X/6-31G*/PCM Level) for the transition state (TS) of the 1,3-rearragement of **2a-Me** (methyl ester equivalent of **2a**) with TMSCl (Scheme 2). The calculated TSs show that the rearrangement occurring with hydrogen bonded intramolecular delivery of a chloride ion is the most favorable reaction pathway. The E/Z-selectivity can be rationalized by the more favorable

transition state E-TS, where the approach of a chloride ion is from the side of the hydrogen as opposed to that of the methoxycarbonyl group in Z-TS, generating E-4a-Me predominantly. The energy difference between these two TSs ($-10.2 \, \text{kcal/mol}$) is consistent with the observed high E/Z-selectivity in the product. On the basis of this model calculation, we surmise that the 1,3-transpositions of other substrates induced by TMSOTf and TMSBr also proceed through a similar mechanism. The six-membered ring TSs also can explain the lack of products without the 1,3-position in these reactions.

Scheme 2. DFT-Calculated TSs of 1,3-Transposition of 2a-Me with TMSCl (M06-2X/6-31G*/PCM Level; Distances are in Å)

In summary, an efficient metal-free rearrangement of allenic alcohols bearing aromatic, conjugated, or aliphatic substituents to the corresponding 1,3-dienyl triflates and chlorides has been developed by using TMSOTf and TMSCl. Clearly, the driving force of this 1,3-transposition is the formation of more stable conjugated dienes. The effective synthesis of tri- and tetrasubstituted 1,3-dienes with excellent E/Z-selectivity by instituting the sequential formation of allenic alcohols from readily available building blocks followed by their rearrangement under metal-free conditions makes this process synthetically valuable.

Acknowledgment. Financial support for this work from the National Science Foundation (CHE 0955972) for D.L. and NSFC (21002073) for Y.X. is greatly acknowledged. We are grateful to Mr. Furong Sun of the University of Illinois at Urbana—Champaign for high resolution mass spectrometry data.

Supporting Information Available. Experimental procedures and spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

Org. Lett., Vol. 15, No. 7, 2013

⁽¹⁵⁾ A related example with the corresponding vinylogous system: Jiang, H.; Gao, Y.; Wanqing, W.; Huang, Y. *Org. Lett.* **2013**, *15*, 238–241

The authors declare no competing financial interest.